
:_71_7 :. ,_:_=_ ;_=_:_:_F_U___ _5_ _ _ _;

NASA Contractor Report 191480

ICASE Report No. 93-31 ...........

/C
A CTIVE CONTR OL OF A COU_CPRES_E FIELDS

USING SMART MATERIAL TECHNOLOGIES

H. T. Banks

R. C. Smith

NASA Contract Nos. NAS 1-18605, NASf_ i 9_80

June 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

,,t
u_
cm
Pm

i
,4"
o_
z

0
p=,.

.J m

_-ZU-
Z_

>00
_.J=J

_u_J

_=_ LU _._

m

U
C

o.

,.=4

f'_

u_

<_

0
O.

a_

N
a_
,,I"

a0

0
I

,
,,,i"

i

i
i

i





ACTIVE CONTROL OF ACOUSTIC PRESSURE FIELDS USING SMART

MATERIAL TECHNOLOGIES 1,2

H.T. Banks

Center for Research in Scientific Computation

North Carolina State University

Raleigh, NC 27695

R.C. Smith

ICASE

NASA Langley Research Center

Hampton, VA 23681

ABSTRACT

An overview describing the use of piezoceramic patches in reducing noise in a structural

acoustics setting is presented. The passive and active contributions due to patches which are

bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incor-

porated into a 2-D structural acoustics model. In this model, an exterior noise source causes

structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure

coupling mechanisms. Interior sound pressure levels are reduced via patches bonded to the

flexible boundary (a beam in this case) which generate pure bending moments when an out-

of-phase voltage is applied. Well-posedness results for the infinite dimensional system are

discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control

is implemented by using LQR optimal control theory to calculate gains for the linearized sys-

tem and then feeding these gains back into the nonlinear system of interest. The effectiveness

of this strategy for this problem is illustrated in an example.
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1 Introduction

The recent development of highly fuel-efficient turboprop and turbofan engines which also

produce high levels of interior cabin noise (especially at low frequencies) has stimulated a sub-

stantial effort on the development of a comprehensive active control methodology for interior

pressure field cavities that have been excited by some primary or external source. In this

overview paper, we shall discuss recent approaches and preliminary results in the growing ef-

fort to develop "smart" or "adaptive" material concepts (materials that possess the capability

for both sensing and actuation are often called "smart" materials) and control strategies for

such a comprehensive methodology.

Interior cavity noise in aircraft with turboprop engines is produced primarily through

(nonlinear) fluid/structure interaction mechanisms. The turboprop blades produce an external

acoustic pressure field which is converted into mechanical vibrations through fluid/structure

interactions at the exterior aircraft cabin walls. In turn, these mechanical vibrations produce,

through interactions of the interior cabin walls with the air in the cabin cavity, pressure waves

or an interior acoustic pressure field.

Our discussion here focuses on a time domain state space approach to active or feedback

control of noise in the interior acoustic cavity. We are especially interested in models and

methodologies which treat transient dynamics. There is a substantial literature on active

control of noise in a frequency domain setting (see [18, 21, 24, 26, 28] for some examples and

further references to both experimental and analytic efforts) as well as a growing literature on

infinite dimensional state space time domain approaches (e.g. [2, 3, 8, 9, 10]). Earlier efforts

by most researchers focused on a control methodology implemented through secondary source

techniques with the input or secondary noise based on feedback of noise levels in the acoustic

cavity. In this approach, a system of microphones and speakers is strategically placed in the

interior cavity where one can sense the pressure field (composed of the primary source plus any

secondary sources present). This information is used as feedback for the actuators or speakers

which produce a (hopefully) optimally interfering signal (secondary noise) to reduce the total

noise levels in certain critical zones (related to passenger comfort). Both frequency and time

domain settings have been used in providing not only "proof of concept" analyses but also in

designing and and implementing these ideas (to date, mainly in luxury class automobiles).

More recently, a second approach utilizing smart materials technology has captured the

attention of investigators. There are a large number of classes of smart materials (e.g. elec-

trorheological fluids, magnetostrictives, shape memory alloys) but we shall restrict our discus-

sions in this paper to piezoceramic devices such as piezoceramic patches which, when bonded

to a structure such as a beam, plate, or curved cylindrical shell, act as an electro-mechanical

transducer. When excited by an electric field, the patch induces a strain in the material to

which it is bonded and hence can be employed as an actuator. Moreover, if the host material

undergoes a deformation (either bending or extension/contraction), this produces a strain in

the patch which results in a voltage across the patch that is proportional to the strain and

thereby permits the use of the patch as a mechanical sensor. If constructed and wired with

proper circuits, these patches can be employed as "self-sensing actuators" [20], thereby provid-

ing a smart or adaptive material capability for the structure to which the device is bonded or

in which it is embedded. When combined with a computational adaptive or feedback control

element, the potential for self-controlled or intelligent structures is enormous.



In our plesentation and discussionsof active control of noise, we shall concentrateon
actuator aspectsof plezoceramics.In the noisesuppressionexampledetailedbelow,we tacitly
assumethat acousticpressurein the cavity and wall displacementsand velocitiesare sensed
for feedback. For a complete smart material system, one would usepiezoceramic(strain)
sensorsand cavity pressuresensorsto construct a Stateestimator for feedback.

The motivating exampleweconsiderconsistsof anexterior noisesourcewhich is separated
from an interior cavity by an active wall or plate. This plate transmits noiseor vibrations
from the exterior field to the interior cavity V]a:-flu_d/structureinteractions thus leading to
the formulation of a system of partia! differential equations consisting of an acoustic wave
equation coupled with elasticity equationsfor the plate. The control is implemented in the
examplevia p!ezoceramicpatcheson the plate whichare excitedin a mannersoasto produce
pure bending moments. It shouldbe noted that the incorporation of the feedbackcontrol in
this manner leadsto a system with an unbounded input term (in this case,a system with
input coefficientsinvolvingthe Dirac delta "function" and its "derivative"). Experimentsare
beingdesignedand carriedout at NASA Langley ResearchCenterin which the interior cavity
is taken to be cylindrical with a circular active plate to which sectorial piezoceramicpatches
are bonded. _

While the motivating structural acousticsapplications are three dimensional in nature,
many of the theoretical and numerical issuesconcerningsystem modeling, the simulation of
systemdynamics,estimation of physical parameters,and the developmentsof feasiblecontrol
strategiescan be studied in 2-D geometries. In this work, we consider a 2-D domain _(t)

which is bounded on three sides by hard walls and on the fourth by a flexible beam (see

Figure 1). A periodic forcing function f, modeling an exterior noise source, causes vibrations

in the beam which then lead to unwanted interior noise.
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FIG. 1. The 2-D domain.

This specific problem was chosen since it is a two dimensional slice from a three dimensional

cylindrical domain which models an experimental apparatus consisting of a rigid cylindrical

pipe with a clamped aluminum plate at one end.
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As a 2-D analogueof the plate, the perturbable boundary F0(t) (seeFigure 1) is modeled
by a fixed-endEuler-Bernoulli beam having Kelvin-Voigt damping. Bonded to the beam are
s pairs of piezoceramic patches which are configured and excited in a manner so as to produce

pure bending moments (see Figure 2). We reiterate that it is through the excitation of these

patches that the sound pressure levels are controlled.

The acoustic response inside the cavity is modeled by a linear wave equation with zero

normal velocity boundary conditions taken on three walls in order to simulate the rigid wails

of the experimental pipe. The boundary conditions on the fourth (beam) side of the acous-

tic cavity result from nonlinear velocity and pressure couplings between the acoustic and

structural responses (as discussed in [14], these coupling terms are nonlinear since they take

place along the surface of the vibrating beam). Finally, under the assumption of small beam

displacements which is inherent in the Euler-Bernoulli theory, the variable domain _(t) is

replaced by the fixed domain f_ = [0, a] × [0, g] as shown in Figure 2.

y'

fF

t2

+

FIa. 2. Acoustic cavity with piezoceramic patches creating pure bending moments.

In terms of the velocity potential ¢ (so that p = Pier is the acoustic pressure) and the

transverse beam displacements w, the strong form of the approximate controlled model for

the coupled system is then given by

Ct,=PA¢ , (z,y)_f_,t>O,

V¢.h=O , (x,y) EF,t>O,

V¢(t,x,w(t,x)).h=wt(t,x) , 0<x<a, t>0,

02A/[
pwtt+ Ox 2 - pICt(t,x,w(t,x))+f(t,x) , 0<x<a, t>0, (1)

cgw Ow

_x(t, =w(t,O) = -_x(t,O) = w(t,a) = a) 0
, t>0 ,

¢(o,_,v) = ¢o(x,v) , w(o,x) = _o(_)

Ct(O,x,y) _-el(X, y) , wt(O,x) -- Wl(X)



e

(for further details concerning the development of this model, see [14]). Here p, pl and

c are the beam density, equilibrium density of the atmosphere, and speed of sound in the

cavity, respectively. The general beam moment .b'l(t, x) consists of an internal component, _"

depending on material and geometric properties of the beam and patches, and an external

component (the control term) which results from the activation of the patches through an

applied voltage. Specific descriptions of these moments in a variety of settings are given

in the next section. Finally, the nonlinear Coupling between the beam vibrations and the

interior acoustic field manifests itself in the velocity term V¢(t, z, w(t, x)). h = wt(t, z) and _-

the backpressure plCt(t,x, w(t,x)).
l

=

2 Piezoceramic Patch/StructureInteractions

As discussed in the last section, control is _mplemented in the system through the excitation -"

of piezoceramic patches which are bonded to the beam. This affects the dynamics of the beam

in two ways. The first effect is passive and results from the structural changes incurred with

the bonding of the patches to the Structure. In addition to the patch thickness, there is a
=

nontrivial bonding layerl and both contribute to a moment of inertia which differs from that |

found in regions of the structure not covered with patches. Moreover, the density, Young's i

modulus and damping coefficient of the glue and patch differ from those of the beam, and

as a result, these parameters must be modeled as piecewise constants in order to accurately

match system frequencies (see [17]). The third passive contribution is due to the piezoelectric

property which dictates that when the patch is subjected to an in-plane strain, a voltage

proportional to the strain is produced. Hence longitudina! and transverse vibrations in the

beam lead to the generation of current which provid-es=addltional damping in the structure.

The final (active) contribution from the piezoceramic patches results from the in-plane strains

which are produced when a voltage is applied. This leads to the generation of external

moments and forces which enter the equations of motion as external loads.

The initial part of this section contains a discussion concerning the contributions due to

patches which are bonded to an Euler-Bernoulli beam. The changes which are necessary for

extending these arguments to plates and shells are then outlined in the latter part of the

section with further details given in [16]. i

2.1 Piezoceramic Patch/Beam Interactions

In the discussion which follows, we Consider an Euler-Bernoulll beam Of length g, width b

and thickness h as depicted in Figure 3. The Young's modulus, mass density (in mass per

unit volume) and damping coefficient fo r the homogeneous beam are denoted by Eb, Pb and

CDb, respectively. Bonded to the beam are piezoceramic patches which can be mounted either

individually or in pairs as shown in Figures 3 and 4. In the ini_[a]_iscussion concerning

the contribution due to the patch pairs, it is assumed that both patches have thickness T,

Young's modulus Ep_, density pp_, and damping coefficient cove. Moreover, it is assumed that

the bonding layers for each patch have the same thickness, Young's modulus, density and

damping coefficient, and these parameters are denoted by Tbt, Ebb, P_,t and CDbl, respectively.

We emphasize that these assumptions are made solely for clarity of presentation, and similar
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results can be obtained in an analogous manner for the more general case in which the patches

and bonding layers have differing thicknesses and material properties (see, for example, [16]).

For an Euler-Bernoulli beam having this configuration, force and moment balancing yields

the strong form of the dynamic equations

02u ON_

p(x) Ot_ Ox - O_:,
(2)

02w 02 M:_ O_y
+ - - o--2-

where N_ and M_ are the internal force and moment resultants, respectively (see [12, 16]).

As depicted in Figure 3, w and u denote the transverse and longitudinal displacements, re-

spectively. The external surface loads qn, 0_ and rhy denote normal forces, in-plane forces and

moments, respectively. For patch pairs with edges at xl and x2, the density of the structure
is

p(z) = pbhb + 2b(pbeTbt + pp, T) x,_(x)

where the characteristic function is given by

1 , xl<_x<_z2Xp_(x)= 0 , otherwise. (3)

FIG. 3. Cantilever beam with piezoceramic patches.

A corresponding weak or variational form of the equations can be determined by choos-

ing Y = H_(F0) > H_(F0) for the space of trial functions where F0 denotes the beam and

the subscript b again denotes the set of functions which must satisfy the essential boundary

conditions. Through an energy derivation, one arrives at the variational form

fo e { 02u 0¢1p(x)_-_¢a + N_ 0---_--

fo { 0 ¢3p(z)-_--_-¢3 + M:_ Ox 2

- 0¢1 }N_--_--_x dx = 0 for all ¢1 E H_(Fo)

jdx=O for all ¢3zH_(Fo)

(4)

of the beam equations where N_ and lt?/_ are external line force and moment resultants.

As discussed in [16], the surface loads _ and rhu of (2) are locally related to the forces and



momentsN_ and M_ (which are more natural quantities to use in a weak formuiation) through

the expressions q_ = -_0_, rh,, = -_. Global expressions for the Specific loads which result

from the activation of the patches in both the strong and weak formulations are discussed

later in the section. =

Z

T!................ ........!1Tb,_I?........................
z=O X

T[ ................

z=O

_/_ ........... _/'Tb-"

/ S_train

X

Ca) (b)

FIG. 4. Strain distribution for the composite structure undergoing bending and extension; (a) patch

pair, and (b} single patch.

Internal Moment and Force Resultants

In order to determine expressions for the internal force and moment resultants N_ and

M_, the patch pair configuration illustrated in Figure 4a is considered first. Because these

resultants depend upon the stresses and ultimately upon the strains occurring in the structure,

the description of the resultants begins with a description of the in-plane strains.

In accordance with the Euier-Bernoulii theory, thestrain is assumed to be linear and is

continuous throughout the Combined structure. With _ and ,_ denoting the midsurface strain

and change in curvature, respectively, the strain at an arbitrary point in the beam, bonding

layer: or: patch is given by e = e ÷ ,¢z Where :z is the distance of t-he point from the middle

surface of the beam (see Figure 4a). Because of the differing Young's moduli and damping

coefficients in the beam, bonding layer and patch, the stress slopes will differ in the various

layers. Under the assumption that the stress is proportional to a linear combination of strain

and strain rate, the stress is given by "

Ebe + CDb_ , beam
a = Eble + CDbee , bonding layers (5)

Er, ee + CDvee , patches

The coefficients CDb and CDbt are the Keivin-Voigt damping Coefficients for the beam and

bonding layer While the_coefficient CDpc is taken to bea combination of the Kelvin-Voigt

damping coefficient for the patch and the damping which results from the production of

current when the structure vibrates. This latter contribution to the damping results from

the piezoelectric effect of the patches which dictates that a voltage is produced when the

patch is subjected to in-plane strains. Under the assumption that the Kelvin-Voigt (material)

and electrical damping have approximately the same types of effect in the patch, we have

combined the two into the coefficient cove which is considered to be unknown and like the other
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z

parameters, must ultimately be estimated using data fitting techniques with experimental data

when considering actual applications. We also point out that the expression (5) can easily

be generalized to include the possibility of differing material properties in the two patches or

bonding layers.
The force and moment resultants are obtained by integrating the stress across the thickness

of the structure thus yielding the expressions

h/2 [h/2
N: = bj_h/2adz , M: = bj_h/2azdz ,

[h/2+ Tbt+ T [h/2 + Tbt+ T
N, = b J-h/2-Tbt-T ¢r dz , M, --_ b J-h/2-Tbt-T O'Z dz ,

regions without patches

regions with patches .

(6)

The substitution of (5) into (6) yields expressions for the resultants in terms of the midsurface

strain _ and change in curvature n. By considering infinitesimal deformations of the middle

surface, _ and n can be related to the longitudinal and transverse displacements u and w

through the strain-displacement equations

0U

Ox

02W

Ox 2

(see [25], pages 9 and 46). For a beam having two patches bonded to it, the internal (material)

force and moment resultants are then given by

0U 021L

N_ = Eh(x)-_x + cDh(X)_xOt

O_w 03w

M, = EI(x)-_-fix 2 + CDI(x) O--_t

(7)

where

Eh(z) = Ebhb + 2b [EbtTbt + EpeT] Xpe(z)

EI(x) E h3b 2b= b-ff + [Eb a3  + Ep.a3po]Xp (x)

cDh(x) = cobhb + 2b [co,t%t + CDpeT] Xpe(z)

2b
= b + T + •

Here Xv_(x) again denotes the characteristic function described in (3), and the constants a3st

and azp, are given by a3b_ = (hi2 + Tb_) 3 - (h/2) 3 and a3p_ = (h/2 + The + T) z - (h/2 + Tbt) 3.

The substitution of the force and moment resultants in (7) into the dynamic equations

(2) yields the equations of motion for the combined structure in terms of the transverse and

longitudinal displacements w and u. As should be expected for a beam containing a pair of

identical patches which are bonded symmetrically about the middle surface, the differential

equations (under the first order Euler-Bernoulli assumptions) describing the vibrations in the

two coordinate directions are uncoupled.

To see how this differs from the case in which a single patch is bonded to the beam, we

now consider the case in which a patch of width T is bonded to the beam over the region

xl < x < x2 as shown in Figure 4b.

7



Integrating the stresses through the combined thickness of the structure yields the resultant

expressions

_x 02u O_w "" 03wN_ = Eh(z) + cDh(x) o--_-_ + E2(x)-_-_x 2 + CD2(X) O--_t

02w 03w Ou 02u
Mx= EI(x)-b-j + cDI(z)-  + + OxOt

(s)

The parameters in this case are given by

fh(z) = Ebhb + b [EbtTbt + Ep,7_ Xp,(x)

EI(x) = Eb + g [Ebtaabt + Ep_a3p_]Xp_(x)

b
E2(x) = 5 [E, a2_ + Ep.a_,.] X,(_)

, cBh(x) = CDbhb + b [CobtTbt + cDp_T] Xpe(x)

h3b b

b

with a3bt and a3p_ defined as before and a2bt and a2pe given by a2bt = (h/2 + Tbt) 2 -- (h/2) 2,

a2p_ = (h/2 + Tbt + T) _ (h/2 + Tb,) 2.

When the force and moment expressions in (8) are substituted into the dynamic equations

(2), it is apparent that the longitudinal and transverse vibrations are coupled as a result of

the asymmetry of the structure due to the single patch. This is in contrast to the case when

patch pairs are bonded to the beam and helps to indicate the, in general, nontrivial effect that

the patches have on the passive or material properties of the structure.

External Moment and Force Resultants

The second contribution from the piezoceramic patches is the generation of external mo-

ments and forces which results from the converse piezoelectric property that when a voltage

is applied, in-plane strains are induced in the patch. The magnitude of these induced free

strains is given by

where d31 is a piezoceramlc strain constant, and VI and V2 are the voltages into the two

patches in the p_aqr. We point out that when a voltage is applied to a free i_atch with edge

coordinates xl and x2, the point 5: (xl +x2)/2 will not move whereas the symmetric points

on either side will move an equal amount in opposite directions. This motivates the use of

the indicator function in several of the following definitions.

The stresses due to the excitation of the patches are given by

with the negative signs resulting from conservation of forces when balancing the material and

induced stresses in the patch.

The integration of these stresses through the thickness of the patches yields the expressions

(Mx)p_ = [(M_)v, , + (M_)p,2]Xw(x)

(9)
(N_)p, = [(N_)p_, + (g_)p,_lxp,(x)S,,2(x)
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where

1 d
(M_)ve 1 = --C,pebd31th + 2Tbl + T)V_ (M_)p_ = _Ep_b 31(h + 2Tbt + T) V_

2 '

( g_ )_, = - Ep_bd31V_ , ( g_:)v_ = - Ep_bd3_ V2

for the external moments and forces generated by the activation of the patches. The presence

of the indicator function

1 , x < (xl +x2)/2
= o , x = +

-1 , x > (Xl + x2)/2

(10)

results from the fact that for homogeneous patches having uniform thickness, opposite but

equal strains are generated about the point 5: = (xl + x_)/2.

These expressions can then be substituted directly into the weak equations (4) as loads on

the beam (with On = 0 and ]Q_ = (N_:)v_,/t:/_ = (M_)w). In order to determine the patch loads

for the strong form of the beam equations, the corresponding surface moments and forces are

found via the relationships

O(N_:)w r'n_- O(M_)p_= -S1,2(x) Oz ' Ox

and these latter values are used in (2). We point out that this results in the need to differentiate

across discontinuities in characteristic and indicator functions (once for the force and twice

for the moment) whereas this problem is avoided in the weak formulation since the derivatives

are transferred on the test functions. In fact, the effect of the characteristic functions in the

latter case is to simply restrict the integrals to the region covered by the patches.

The general moments in the beam component of the structural acoustic system (1) can

now be described in terms of the internal and external moments just discussed. By combining

both the passive and active contributions due to a single pair of patches which are excited

out-of-phase, the general moment is given by

M = -

where the internal and external moments are

02w OZw

M_ = El(z)-_x2 + coI(x) Ox20 t

(M,)p_ = Ep_bdz,(h + 2Tbt + T)Vxv_(x) = ICSVxp_(z)

as given in (7) and (9), respectively (the latter expression is obtained by taking V = 1/1 = -V2

in (9)). We emphasize that the out-of-phase excitation of the patches produces pure bending

moments and hence only transverse vibrations are present in the beam response.

For a system in which s pairs of patches are bonded to a beam and are excited out-of-phase,

the beam component of the system (1) has the form

02w 02 ( 02w OZw ) _ d 2p(x)-_- + _ EI(x)--_x 2 + CDI(x)-o-_- _ + pier(W) = f + __, ICgui(t)-_--_x2Xw,(x)
i=1

9



where Xp,,(x) denotes the characteristic function over the i th patch pair and u_(t) is the voltage

into the i th pair. The parameters E1 and CDI are given by

h3b 2b [Ebt, a3bt, + ] Xpm(X)El(x) = Sb--_ + fi --_ Epma3pm
i.=-I

2b [CDbt, a3bt ' + CDpma3pm ] X,m(x)
i=1

while the patch parameters are given by ]C_ = Ep_,bd31,(h + 2Tbt, + T_) (in these definitions,

the bonding layers and patches in the i th pair are considered to have thickness Tbl, and

Ti, respectively). We note that the discontinuous parameters p, EI, cDI and K:_ lead to

second derivatives of characteristic functions which causes difficulties in the strong form of

the equations. The transfer of these derivatives onto test functions eliminates these problems

in the weak form of the equations and is one motivation for using the weak form of the system

equations as discussed in the next section.

2.2 Patch Contributions to Plate and Shell Dynamics

In the first part of this section, the contributions from piezoceramic patches to the longitudinal

and transverse vibrations of an Euler-Bernoulli beam were examined. It was noted that the

patch contributions could be categorized into two types; the first resulted from the structural

changes incurred when the patches were bonded to the beam while the second effect was due

to the activation of the patches when a voltage was applied. These same types of effects

result when piezoceramic patches are bonded to more complex structures such as thin plates

or shells.

The motion of a plate differs from that of a beam in that two sets of longitudinal motion

are present with the stretching in one coordinate direction related to the contraction in the

other through the Poisson ratio _. In thin shells, the transverse and longitudinal vibrations

are coupled due to the underlying curvature of the structure. However, once the underlying

dynamic equations in terms of the force and moment resultants are known, the effects due

to the presence and activation of the piezoceramic patches can be determined in a manner

analogous to that discussed above for thin beams (see [16]).

To illustrate, we consider a thin circular cylindrical shell of radius R, thickness h and

having the axial coordinate x as shown in Figure 5. As in the beam discussion, the variable z

measures the distance of a point on the structure from the corresponding point on the middle

surface (z = 0) along the normal to the middle surface.

ZZ
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FIG. 5. The thin cylindrical shell.

As discussed in [16], the infinitesimal strain relationships for a cylindrical shell are

1 1 [ (2-_) ]e_ = _ + za_ , eo - l + z/R (_° + za°) , 7_o - l + z/R _o + z 1+ r

where e_ and ee are normal strains at an arbitrary point within the cylindrical shell and %0 is

the shear strain. Here e_, e0 and :_0 are the normal and shear strains in the middle surface and

a_, _0 and r are the midsurface changes in curvature and midsurface twist (see [23], page 8).

In terms of the axial, tangential and radial displacements u, v and w, respectively, the

expressions for the midsurface strains and changes in curvature for the cylindrical shell are
/

cOu 10v w Ov 10u

c92w 1 02w 10v 2 c92w 20v

t¢_ = Oz 2 , too= R 2 002 + R--: O-'-_ , r= R OxO0 + -R O-''x "

If a generalized Hooke's law in which stress is assumed to be proportional to a linear combi-

nation of strain and strain rate is used as the constitutive relation, the stresses in the shell

are given by

Es CD....._.._s

a. = ;u-'--'-:(e'l- + v.eo)+ I - u_ (fi_+ v.fio)

Es CDs ..

,,_= ;,---;('_:_ + v.,_) + ' - ";:---;(e_+ _._)

Ea CD8

_e = _0_= 2(1+ _,)7_0+ 2(1+ _o)_/_

where o'_ and o'0 are normal stresses and a_:o and o'a_ are tangential shear stresses. The

constants Es, v8 and CD, are the Young's modulus, Polsson ratio, and damping coefficient for

the shell. Similar relations are found in the bonding layers and patches (see (5) for analogous

expressions for the beam).

11



The internal or material moment and force resultants are obtained by integrating the

stresses across the thickness of the structure. For patches having thickness T and bonding

layers of thickness Tbt, this yields the expressions

N_o a-h/2-Tbt-T a,O

Mxo J-h/2-Tbe-T Cr_O

' gox a -h/2-Tbt-T O'Ox

' Moz a -h/2-Tbt-T O'Ox

(11)

in regions of the structure covered by the patches with Similar expressions in those region of

the structure consisting solely of shell material (the limits of integration in this latter case are

-h/2 and h/2). Explicit descriptions for these internal moment and force resultants can be

found in [16].

In a shell which is excited by the activation of piezoceramic patches, the external moments

and forces are due to the in-plane strains

d31

_.., = (_x)po,= (_0).e,- T V_ ,

which result from the input of the voltages V1 and V2 into the outer and inner patches. The

resulting external stresses are given by

L

E1

(_x).., = (-0)_, = 1- _,_"" ' ('_)_' = (_0)po=-
E2

1 -- I/2 epe2 "

For a patch with bounding values xl, x2, O_ and 02 the total external line moments and
forces are

(M_).o= [(M_)._,+ (M_)._]X._(x,O)

(M0)..= [(M0)pe,+ (Mo).._]X..(_,O)
(12)

(U_)_.= [(U_)..,+ (N_).._]X._(_,O)S_,_(_)_,,_(O)

(Ne)p_ = [(N0)pe, + (No)p_a]Xp,(x,O)S,,2(x)S,,2(O)

where the indicator function S,,2(x) is defined in (10) (with a similar definition for $1,2(0))
and

1 , xa <x<_x2, 01 <_0<_02Xp,(x,O) = 0 , otherwise .

The individual patch moments are obtained by integrating the external stress distribution

through the thickness of the patches in the same manner used in the beam analysis (see [16]).

In order to obtain a strong form of the equations of motion, force and moment balancing

12
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canbe usedto obtain Donnell-Mushtari shell equations

02u _ R ON=
RP(x,°)-b-_

O" 02v ONo
Rp(z, )E: O0

02w _ R O2M= 1 02Mo
RP(x'°)-E: _ R 002

ONe= _RO(_)_o .

R Y=O O(Ne)p, ^ 0= s,,_(=)s,,_()-EE= oe

202M=e (M=)p, 1 0(M0),,.
0-_ + No = R?t,- R 02 cgx R 00

(see [16, 23] for a more detailed derivation of these equations as well as a discussion concerning

the assumptions that are made in obtaining this and other forms of the equations of motion for

a thin shell). The contributions due to the patches are incorporated in the internal moments

and forces (11), the external moments and forces (12), and the variable density p(x, 0).

3 Weak Form and

Acoustics Model

Well-Posedness of the Structural

As discussed in the last two sections, the incorporation of the piezoceramic patch contributions

into the strong form of the modeling system equations leads to first and second derivatives of

characteristic functions since both the internal and external moments contain discontinuities

at the edges of the patches. This yields an unbounded control input operator and leads to

difficulties when approximating the dynamics of the coupled system. To avoid these difficulties,

it is advantageous to formulate the problem in weak or variational form (the use of the

variational form also permits the use of basis functions having less smoothness than those

used when approximating the solution to the strong form of the equations).

3.1 Weak Form of the System Equations

The state for the second-order form of the 2-D structural acoustics problem is taken to be

z = (¢,w) in the Hilbert space H = L2(f_) × L2(ro) with the energy inner product

The choice of the space L2(f_), defined as the quotient of L2(fl) over the constant functions,

results from the fact that the potentials are determined only up to a constant.

To provide a class of functions which are considered when defining a variational form

of the problem, we also define the Hilbert space V = /_l(f_) x Ho2(Fo) where /_.1(_) is

the quotient space of H 1 over the constant functions and H_(Fo) is given by Ho2(ro) =

{¢ _ g2(ro): ¢(x) = ¢'(z) = 0 at z = 0,a). The Y inner product is taken as (here and below

we use the notation D = _)

13



As discussed in [14], integration in combination with the use of Green's theorem then yields
the nonlinear first-order variational form

+ fro{CnlD2wtD2rl+pl[¢t(w).-wdl}d7

$

o i=1 o

(13)

for all (_,q)in v (here Xv,,(x) denotes the characteristic function over the i th patch). We note

that the nonlinear coupling term can be written as ¢,(t, x, w(t,x)) = Ct(t,x, 0)+¢i(t, x, w(t,x))

where Ct(t,z,w(t,x))= Ct(t,x,w(t,x))- Ct(t,x,O). We will make use of this decomposition

in the abstract formulation of :the nonlinear system as a perturbation of a linearized system

in our discussion below. Again, a more complete discussion and motivation concerning the

formulation of the first-order system in weak form is given in [14].

We point out that in this variational form the derivatives have been transferred from the

plate and patch moments onto the test functions. This eliminates the problem of having to

approximate the derivatives of the characteristic function and the Dirac delta as is the case

with the strong form of the equations.

The system (13) can be formally approximated by replacing the state variables by their

finite dimensional approximations and constructing the resulting matrix system. Hence it is

in a form which is suitable for use in applications. In order to discuss the well-posedness of

the model, however, it is advantageous to pose the problem in terms of sesquilinear forms and

the bounded operators which they define, and this is the subject of the rest of the section.

=

=

_2

3.2 Abstract First-Order Formulation

As motivated by the theoretical results in [3, 4, 6, 15], we consider (see [29] for basic definitions

and fundamental functional analysis theory) the Gelfand triple V _-* H _ H* _ V* with pivot

space H and define sesquilinear forms ai : V × V ---* 1R, i = 1,2 by

: ¢

a,(*, qJ)= [A P.t"V¢" V_dw + [_ EID'wD'71dT,
Jl o

.,(¢, Jro{..ZD'.D', +.,(¢,_-
2

where 0 = (¢,-w) and * = ((,r/) are in V. : : : :

As detailed for a similar problem in [15], it is straightforward to show that with these

definitions, al and a2 are bounded (there exist c_ and c2 such that 1a1(¢, q_)[ < c_]¢[vl_ly

and 1Cr2(¢, @)1 _< C2I¢]VltP]V), a_ is V-elliptic and a2 is H-semielliptic (there exist c > 0 and

b > 0 such that Rea_(_,¢) > c]¢l_, and Rea2(¢,¢) > bl¢]_ for all ¢ E V) and that a_ is

14
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symmetric (a,(tb, qJ) = al(kg, _) for all _, qJ E V). As a result of the boundedness, we can

define operators AI, A2 E £(V, V') by

(Ai_, _}v',v = ai(#, _)

for i = 1,2.
To account for the control contributions, we let U denote the Hilbert space containing

the control inputs (U = Ill in our structural acoustics example), and we define the control

operator B E £(U, V*) by

$

(Bu, _)v,,v =/r _-" )CiBuixv_'(x)D2rld3'
0 i=1

for qJ E V, where (.,.)v.,v is the usual duality pairing. Finally, letting F = (0, f/pb) and

G(z, zt) = (0,-p.tCt(w)) where again, Ct(w) = Ct(t,x, w(t,x)) = Ct(t,x, w(t,x)) - Ct(t,x,O)

denotes the nonlinear perturbation to the linear coupling term, we can write the control system

in weak or variational form

(zu(t), _)v.,v + a2(zt(t), _) + a,(z(t), _) = (Bu(t) + F(t) + G(z(t),zt(t)), _)v.,v (14)

for • in V. This then yields the system

zu(t) + A2zt(t) + A,z(t) = Bu(t) + F(t) + G(z(t),zt(t))

in V*.

To apply infinite dimensional control results for periodic forcing functions to this problem,

it is advantageous to write the system in first-order form. This is accomplished by defining.

the product spaces "H = V x H and 12 = g x V with the norms

= I¢1 +

I(¢, = I¢1 +

We point out that 12 _ 7"/__ 7-/* ¢--* 12" again forms a Gelfand triple.

The sesquilinear form cr : 12 x 12 _ IR is then defined by

a(O,X)=_r((T,A),(O,_))=-(A,O)v + a,(T, q0 + a2(A, _)

where X = (¢, qJ) and O = (T, A).

For the state Z(t) = (z(t), zt(t)) in "H, we can subsequently write the system in the first-

order variational form

(Zt(t), X)v.,v + a( Z(t), X) = (Bu(t) + f'(t) + {7(Z(t)), X)v.,v (15)

where 9r(t) = (O,F(t)), _(Z(t)) = (O,C(z(t),zt(t))) and Bu(t) = (O, Bu(t)). As usual, the

relation (15) must hold for all X E 12. Finally, the weak form (15) is formally equivalent to

the system

Zt(t) = .AZ(t) + C(t,Z(t)) (16)

15



in I;" where

and

c(t,z(t)) =  u(t) + .r(t) + o(z(t))

domA= {e= (T,A)E 7-(: A E V,A,T + A2AE H}

[0 1].,4= -,41 -A2

(17)

(18)

3.3 Model Well-Posedness

In the previous discussion, the weak form of the coupled structural acoustic equations was

written as an abstract first-order semilinear initial value problem with a state in 7"(. The

nonlinear forcing term C(t,Z(t)) = Bu(t) + .T'(t) + _(Z(t)) however lies in _,'* rather than

7"( since the control term B E Z:(U,V') defines the product space control term Bu(t) =

(0, Bu(t)) E {0} x V* C V × V" = l;'. Hence the standard theory for abstract semilinear

Cauchy problems does not apply directly, and the first step in the following discussion is the

outline for arguments which can be used to extend the operator ,4 to a space where the theory

does apply. A more extensive discussion concerning the well-posedness of a linear problem of

this type can be found in [15] and details for the following arguments can be found in that

work.

The first step in determining the well-posedness of the system model is to argue that

.,4 generates a C0-semigroup on 7"/. As noted earlier, the sesquilinear form o'1 is V-elliptic,

continuous and symmetric while or2 is continuous and H-semielliptic. From the Lumer-Philips

theorem (with further arguments found in [1] and pages 82-84 of [4]) this then implies that

the operator .,4 defined in (18) generates a C0-semigroup on the state space 7"/. Moreover, the

semigroup satisfies the exponential bound IT(t)l < e_t for t > 0 (where in fact, w = 0 due to

the fact that .A is dissipative as shown in [4]).

Since Bu(t) lies in l, _" rather than _, the next step is to extend the semigroup T(t) on 7"(

to a semigroup 7"(t) on a larger space W* D {0} x V" so as to be compatible with the forcing

term (this is accomplished using "extrapolation space" ideas and arguments similar to those

presented in [6, 7, 22]).

As detailed in [15], the space of interest is defined in terms of dora .A" where

dom.A" = {X = (¢, qJ) E 7"(IqJ E V,A_¢- A_ E H}

( ).A*X = A_¢ - A_

Specifically, the space W = [dom A'] is taken to be dom ,4" with the inner product

for some arbitrary but fixed )_0 with _0 > w (recall that the original solution semigroup

satisfies the bound IT(t)[ < e"t). As proven in [7], the resulting 14) norm is equivalent to

the graph norm corresponding to .A'. Moreover, we have that {0} × V* C W" = [dom .A']"

(see [15] for details).

16
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From the definition of .3,* and the equivalence of the _3 norm with the graph norm corre-

sponding to _t*, we can define .AO E }42" by

(40) (x) = (o,

for all ® E 7-[, X E W. With this definition and the Riesz representation theorem, it is shown

in [15] that A is an extension of the original operator A from domA C _ to all of _. Finally,

as proven in [7], the operator ft. is the infinitesimal generator of a C0-semigroup "]-(t) on }4)*

which is an extension of T(t) from 7( to W*.

In the corresponding linear problem, under reasonable regularity conditions on t _ u(t)

and t _ F(t), one can immediately argue the existence of a unique strong solution to the

system in terms of the extended semigroup T(t). For the semilinear problem of interest,

however, the nonlinear nonhomogeneous terms must satisfy certain continuity criteria in order

to obtain similar results. For example, if we let X denote the reflexive Banach space 1,V" and

assume that C : [0, T] × X _ X defined in (17) is continuous in t on [0, T] and uniformly

Lipschitz continuous on X, then the integral equation

z(t) = 9(t)Zo + ¢(t- Uu( ) + +

is well-defined for Bu+ F+G(Z) e L2((0, T), V*). Moreover, for Z(0) = Z0, the solution Z(t)

of (19) is a unique mild solution to (16) (see Theorem 1.2, page 184 of [27]). In addition, if

C : [0, T] x X ---* X is Lipschitz continuous in both variables, then it follows from Theorem 1.6,

page 189 of [27] that (19) provides the strong solution to (16) interpreted in the }/Y* sense.

The required continuity of the nonhomogeneous terms Bu and F is demonstrated in [15]

and hence the remaining question concerns the Lipschitz continuity of the nonlinear coupling

term G(z, zt) = (0, -plOt(w)). If we assume that the input terms F and Bu are sufficiently

smooth so as to assure the necessary continuity in G(z, zt), then our open loop nonlinear

system is well-posed.

3.4 Well-Posedness of the Closed Loop System

The arguments leading to the well-posedness results for the linear and nonlinear open loop

models can also be extended to the closed loop systems which result when the gains determined

for a corresponding LQR problem are fed back into the system. In determining these gains,

the perturbing force 9t" is assumed to be periodic (this is a reasonable assumption since 9t"

models the exterior noise which in this problem is generated by the revolution of turboprop

or turbofan blades).

Discussing first the linearized problem, the periodic LQR problem consists of finding u E

L2(0, _-; U) which minimizes a quadratic cost functional of the form

J(u)= _ {(QZ(t),Z(t))n+(Ru(t),u(t))u}dt

subject to Zt(t) = AZ(t) + Bu(t) + .T'(t) with Z(0) = Z(T). Since Z = (¢,w, Ct, wt), the

operator Q can be chosen so as to emphasize the minimization of particular state variables as

well as to create windows that can be used to decrease state variations of certain frequencies.
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The control spaceU is taken to be IF{s if s patches are used in the model, and it is assumed

that the operator R E /:(U) is an s x s diagonal matrix where rii > 0, i = 1,...,s is the

weight on the controlling voltage into the i th patch. In the case that B is bounded on _, a

complete feedback theory for this periodic problem can be given as discussed in [19]. This

theory can be extended to also include the case of unbounded B, i.e., B E/:(U, Y*), of interest

here (see [5]). Under usual stabilizability and detectability assumptions on the system as well

as standard assumptions on Q, the optimal control is given by

u(t) = -R-' _'[rIz(t) - r(t)] (20)

where FI E/2(1_', 12) is the unique nonnegative self-adjoint solution of the algebraic Riccati

equation

A'H + HA - I]BR-1B*H + Q = 0. (21)

Here r is the unique r-peri0dic solution of

÷(t) = -(A" - IIBR-'B')r(t) + rI.r(t) (22)

and the optimal trajectory Z is the solution of

2(t) = (.4 - B R-' B'II)Z(t) + B n-' B*r(t) + .Y'(t) . (23)

As discussed in [5] for the case when B E £(U,I)'), one also finds that the operator

.A-BR-1B'II generates an exponentially stable C0-semigroup S(t) on the state space 7"/. From

Corollary 10.6, page 41 of [27], this implies that A* - IIBR-113 * generates the corresponding

adjoint semigroup S*(t) on 7"/" _ 7-/. The semigroup S(t) can then be extended through the

extrapolation space techniques just discussed to a larger space FV* D {0} x V', and with

reasonable regularity assumptions on t _ F(t), this implies the existence of solutions to the

tracking equation (22) and closed loop system (23) for r(0) = r0 and z(0) = z0.
As discussed in greater detail in the next section where the corresponding finite dimensional

control problem is considered, an effective strategy for controlling the original nonlinear system

is to determine the gains for the linearized model and feed these back into the nonlinear system.

This then yields the nonlinear closed loop system

z(t) = (.4 - Z3R-'S'n)z(t) + BR-'S',-(t) + .r(t) + a((Z(t))

where again, .,4- BR-1B*H generates the C0-semigroup S(t) which can then be extended

to I'V*. With the assumption that the input term F is sufficiently smooth so as to assure

the necessary continuity in nonhomogeneous terms, the closed loop nonlinear system is also

well-posed.
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4 System Approximation and the Finite Dimensional

Control Problem

The discussion thus far has centered around the infinite dimensional model for the structural

acoustic system as well as issues concerning its well-posedness. However, in order to develop

viable schemes for approximating the nonlinear system dynamics, estimating physical param-

eters, and determining control gains, appropriate finite dimensional approximations to the

state variables w and ¢ must be developed. For reasons discussed in [3], a Galerkin scheme

was chosen and the potential and beam displacement were discretized in terms of spline and

spectral expansions, respectively.

4.1 System Approximation

A tensored Legendre basis was used for the discretization of the acoustic velocity potential.

Letting P_(x) and P[(y) denote the standard Legendre polynomials that have been scaled by

transformation to the intervals [0, a] and [0, _], respectively, the basis functions {B,'_} for the

cavity were then defined as

Bi'_(x,y)=P_(x)Pf(y) for i=O, 1,...,m_, j=O, 1,...,my, i+j_O,

where m = (m_ + 1). (my + 1) - 1. The condition i +j _ 0 eliminates the constant function

thus guaranteeing that the set of functions is suitable as a basis for the quotient space. The
m m

m dimensional cavity approximating subspace is taken to be H_ = span {B i }i=1 and the

approximate cavity solution is given by

m

CN(t,z,y) =
i-----1

my rn x

-- E E
j=0 /=0

i+j#0

Cubic splines were used as a basis for the beam displacement since they satisfy the smooth-

ness requirement as well as being easily implemented when adapting to the fixed-end boundary

IR nln-1 denote the cubic splines which haveconditions and patch discretizations. Letting t_i Ji=l

been modified to satisfy the boundary conditions (see [3, 14] for details), the corresponding
"fl21n'l'n-1 and the

n - 1 dimensional beam approximating subspace is given by H_--span t_i Ji=l

approximate beam solution is taken to be

n-1

wY(t,x) = _ wY(t)B'_(x) •
i----1

The approximating state space was then taken to be H N - H m × H_ where N = m + n- l,

and the product space for the first order system is TIN = H N × H g. By restricting the infinite

dimensional system (13) to 7"/N × 7"/N, one obtains the nonlinear finite dimensional system

MN_/N(t) = 2 N (yN(t)) + [_Nu(t) + FN(t)

=
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or equivalently
_/N(t)= .Am (yN(t)) + BNu(t) + FN(t)

(24)
yN(0)

Explicit descriptions of the mass and stiffness operators M N and .AN(yN(t)) as well as detailed

definitions of the control matrix /}N and the force vector' FN(t) can be found in [3, 13]. The

vector yN(t) (¢N(t), ,¢N(t),wN(t), N= ...... ,w,__,(t),¢N(t),...,¢N(t), _bN(t),''',£vN_,(t)) T

contains the 2N x 1 approximate state coefficients while u(t) = (u,(t),...us(t)) T contains the

s control variables. As detailed in [14], the nonlinearity in the operator A N (yN(t)) manifests

itself in the dependence of the operator on the unknown coefficients {wj(t)}.

4.2 The Finite Dimensional Control Problem

Due to tlle nonlinearity in the infinite dimensional system (13) and hence the finite dimen-

sional matrix system (24), LQR feedback control results for problems with periodic forcing

terms can not be directly applied as there were in [3]' instead, the following strategy was

adopted. The infinite dimensional system was linearized by replacing the nonlinear Cou-

pling term Ct(t,x,w(t,x)) by its linear component Ct(t,x,O) (this is equivalent to taking

G(z(t),zt(t)) = 0 in (14) or (G(Z(t)) = 0 in (15) or (16)). This linearization is motivated by

the assumption of small beam displacements which is inherent in the Euler-Bernoulli theory

(for physically reasonable input forces, the beam displacements are of the order I0-Sm for

the geometries of interest). The feedback gains for this approximate linearized system were

calculated from a periodic LQR theory (see [3]) and were then fed back into the nonlinear

problem to create a stable nonlinear closed loop control system.

To illustrate this control strategy, the LQR theory for problems with periodic input terms

is briefly outlined. The resulting gains are then applied to the nonlinear problem of interest

with the results being illustrated in an example.

Linear Periodic Control Problem

As discussed in [3], the approximation of the nonlinear coupling term C,(t,x, w(t,x)) by

its linear component, and the projection of the resulting system into the finite dimensional

subspace 'H N × 7-/N yields the linear finite dimensional Cauchy equation

_)N(t) = ANyN(t) + BNu(t) + FN(t)

yN(O) =yoN (25)

= L : = : : . -

- :7 := : . :

(this system can also be obtained by restricting the infinite dimensional system (i4) with

G(z(t), zt(t)) = 0 to 7-lN× 7-lN). The components of the linear stiffness matrix can be found
in [3].

The periodic finite dimensional control problem is then to find u E L2(0, r) which minimizes

JN(u)=_ {(QNyN(t),yN(t))r_N+(Ru(t),u(t))w}dt , N=m+n-1

= =

L

2O
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where yN solves (25), T is the period, R is an s × s diagonal matrix and r, > 0, i = 1,..., s

is the weight or penalty on the controlling voltage into the i th patch.

The nonnegative definite matrix QN is chosen in a manner so as to to emphasize the

minimization of particular state variables. From energy considerations as discussed in [3], an

appropriate choice for QN in this case is

QN .= MN:D

where M N is the mass matrix, and the diagonal matrix _ is given by

D = diag [dlI m , d2I '_-1 , d3I TM, d4I '_-1 ]

Here I k , k = m, n - 1 , denotes a k × k identity and the parameters d_ are chosen to enhance

stability and performance of the feedback.

The optimal control is then given by

uN(t) = R-I(BN) T [rN(t) -- HNyN(t)]

where H m is the solution to the algebraic Riccati equation

(AN)TH N + HNA N _ 1-INBNR-1 (BN)TI-[N + QN __ 0 . (26)

For the regulator problem with periodic forcing function FN(t), rY(t) must satisfy the linear

differential equation

÷N(t) = -- [AN- BNR-I(BN)THN] TrN(t) + HNFN(t) (27)

rN(0) = rN( )

while the optimal trajectory is the solution to the linear differential equation

fiN(t) = [A N - BNR-I(BN)TH N] yN(t) + BNR-'(BN)TrN(t) + FN(t)

yN(o) = yN( ) .

The finite dimensional optimal control, Riccati solution, tracking equation and closed loop

system can be compared with the original infinite dimensional relations given in (20), (21),

(22) and (23), respectively. In order to guarantee the convergence H N ---* II, r N _ r, and hence

the convergence of u N _ u, it is sufficient to impose various conditions on the original and ap-

proximate systems. These hypotheses include convergence requirements for the uncontrolled

problem as well as the requirement that the approximation systems preserve stabilizability

and detectability margins uniformly. A fully developed theory (see [5]) is available for the

case when .T = 0 (in this case the tracking variable r does not appear in the solution) even

when B is unbounded. However, the theory in [5] requires strong damping in the second-order

system whereas the only damping in our system isthe _strong Kelvin-Volgt damping in the

beam (damping in the cavity was omitted due to the relatively small dimensions involved).

Although the convergence theory of [5] does not directly apply here, numerical tests indi-

cate that convergence is obtained even though this system contains only weak or boundary

damping.
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Nonlinear Control Problem

To extend these resultsto the nonlinear system of interest,the lineargains were calculated

and fed back into the nonlinear system (24), thus yielding the suboptimal control

ug(t) = R-I(BN) T [rN(t) - l-INyN(t)]

and the closed loop system

flY(t) = A N (yN(t)) -- B NR-1( BN)TIINyN(t) + BN R-_( BN)T_ N (t) + FN(t)

y (o) =

The Riccati matrix [I N and tracking vector flY(t) are solutions to (26) and (27) which arise

when formulating the corresponding LQR problem.

Example: Nonlinear Control

To illustrate the dynamics and effects of feedback control on a nonlinear system mod-

.... eiing a 2-D analogue of a 3-D experimental setup, a .6 m by 1 m cavity _ With a flexible

beam at one end was considered (see Figure 6). The beam was assumed to have width

and thickness .1 m and .005 m, respectively, and the Young's modulus and beam density were

taken to be E = 7.1 x 101° N/m 2 and Pb = 2700 kg/m 3. This yielded the stiffness parameter

EI = 73.96 Nm 2 and linear mass density p = 1.35 kg/m. The damping parameter for the

beam was chosen to be CDI = .001 kgm3/sec. The speed of sound and atmospheric density

inside the cavity were taken to be c = 343 m/see and p! = 1.21 kg/m a, respectively.

•15 .45

: 0 .6

FIG. 6. Acoustic cavity with one centered 1/2 length patch.

Several forcing functions modeling uniform (in space) periodic exterior sound sources were

considered. In this example, the forcing function was taken to be

f(t,x) = 2.04 sin(4701rt)
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which models a periodic planewave with a root mean square(rms) sound pressurelevel of
117 dB. The frequencyof 235 hertz is approximately halfway between the first and fourth
natural frequenciesof the system(asshownin [11], theseoccur at 65.9hertz and 387.8hertz,
respectively).

The dynamicsof the uncontrolledsystemwereapproximatedusing80cavity basisfunctions
(m_ = m v = 8) and 11 beam basis functions (n = 12). The time interval of interest was taken

to be [0, 16/235] which admitted 16 periods of the driving frequency, and time histories of the

beam displacement at X = .3 and cavity pressure at X = .3, Y = .1 on this temporal interval

are plotted in Figure 7.

Tile frequency plots of the uncontrolled beam displacement and cavity pressure in Figure 8

exhibit not only the driving frequency but also transient responses at 65.9,181.6,345.2,387.7

and 519.5 hertz which are due to the natural frequencies of the coupled system (see [11] for a

complete discussion of the dynamics and natural frequencies for the corresponding linearized

system). In particular, the high energy response at 181.6 hertz indicates a strong excitation

of the system at what corresponds to the frequency for the first mode of the uncoupled cavity

(care must be taken when describing the dynamics of the system in terms of the undamped

beam and cavity modes since the nonlinear coupling and beam damping yield system responses

which differ somewhat from those of the isolated components). The presence of the multiple

frequencies can also be seen in the time history plots of the uncontrolled beam displacement

and cavity pressure in Figure 7.

Control was then implemented by using Potter's method to calculate the gains for the

linearized system and feeding them back into the nonlinear system as discussed previously.

The following results were obtained with an out-of-phase single pair (so as to create pure

bending moments) of centered patches covering one half of the beam length as shown in Figure

6. The quadratic cost functional parameters were taken to be dl = d2 = d4 = 1, d3 = 10 4

and R = 10 -6 with d3 chosen to have larger magnitude so as to more heavily penalize large.

pressure variations.

Figure 9 contains a plot of the controlling voltage u(t). As expected, it is periodic, and

the magnitude remains below 25 V which is a physically reasonable voltage to apply to the

piezoceramic patches.

The application of the controlling voltage resulted in a high frequency transient response

and 168 cavity basis functions (rn, = mv = 12) and 15 beam basis functions (n = 16) were

needed to resolve the controlled system dynamics.

From Figure 7, it can be seen that the controlled responses undergo a transient phase of

approximately three periods and then are maintained at a low magnitude throughout the rest

of the time interval. By calculating the rms pressure levels, it was determined that at the point

(X, Y) = (.3, .1), the uncontrolled sound pressure level is 82.8 dB whereas the controlled sound

pressure is reduced 15.7 dB to 67.1 dB. The level of reduction becomes even more significant

as one moves deeper into the cavity since the strong cavity excitation in the uncontrolled case

yields high magnitude pressure oscillations near the back wall which are uniformly reduced

by the application of the controlling voltage. Finally, it is noted that the relative reduction

in pressure is more significant than the reduction in beam displacement. This is due to the

heavier penalization of pressure fluctuations through the choices d2 = 1 and d3 = 104.

The frequency plots of the controlled responses (in Figure 8) show that the dominant re-

sponse is now at the driving frequency of 235 hertz. They also demonstrate the presence of
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high frequencytransient responseswhich are much moresignificant than those found in the
uncontrolled case. This indicates that the interior pressureoscillations are reduced through
two mechanismswhen the controlling voltageis applied; the first is due to the reducedmag-
nitude of the beamdisplacementswhile the secondis due to the excitation of high frequency
beam oscillationswhich couplelessreadily with the interior acousticfield. The combination
of the two results in significantly reducedinterior soundpressurelevels.
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FIG. 7. Uncontrolled and controlled beam displacements and pressures at the points X = .3 and

(X, Y) = (.3, .1) throughoui the t_me interval [0, 16/235].
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5 Conclusion

In this paper, we have discussed several of the issues which are involved in using piezoceramic

patches as actuators in a nonlinear structural acoustics application. The patches affect the

dynamics of the coupled system by contributing external forces and moments to the structure

when a voltage is applied, and the first part of the discussion is centered around a description of

the interactions between the patches and an Euler-Bernoulli beam and a thin cylindrical shell.

In this discussion, care was taken to distinguish between the passive (material) contributions,

due to the added thickness and differing material properties of the patch and bonding layer,

and the active (external) contributions which result from the strains which are produced when

a voltage is applied to the patches.

As a result of the differing material properties and presence of the piezoceramic patches,

the material and control parameters of the combined structure are piecewise constant in nature
and hence lead to discontinuities in the moment and force resultants. This leads to difficulties

in the strong form of the system equations when the moments are differentiated and is one

motivation for using the weak or variational form where the derivatives are transferred onto

the test functions. The weak form is also advantageous for many approximation schemes since

it reduces ];he smoothness requirements for the basis elements. Finally, well-posedness issues

were considered by posing the weak form in the context of sesquilinear forms.

Due to the nonlinearities arising in the coupling between the beam vibrations and the

interior acoustic field, LQR feedback control results could not be directly applied to the

problem. Instead, gains corresponding to the linearized problem were calculated and fed back

into the nonlinear system. As demonstrated by the results in the example as well as the more

extensive set of examples in [14], this strategy is very effective for this problem. This is partly

due to the weakness of the nonlinearity. By comparing the nonlinear results reported here

and in [14] with the corresponding linear ones in [11], one can see that qualitatively, the two

sets agree closely. This can be explained by the fact that the beam displacements are very

small and hence the llnearlzed coupling terms quite accurately approximate the true nonlinear

expressions.
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